An Empirical Evaluation of XQuery Processors

Stefan Manegold

CWiI

Kruislaan 413
1098 SJ Amsterdam
The Netherlands
Stefan.Manegold@cwi.nl

ABSTRACT

This paper presents an extensive and detailed experimen-
tal evaluation of XQuery processors. The study consists of
running five publicly available XQuery benchmarks — the
Michigan benchmark (MBench), XBench, XMach-1, XMark
and X007 — on six XQuery processors, three stand-alone
(file-based) XQuery processors (Galax, Qizx/Open, Saxon-
B) and three XML/XQuery database systems (BerkeleyDB/
XML, MonetDB/XQuery, X-Hive/DB). Next to assessing
and comparing the functionality, performance and scalabil-
ity for the various systems, the major focus of this work is to
report in detail about the experiences made while perform-
ing such an exhaustive study, to discuss all the problems
that we encountered and how we solved them, and hence to
hopefully provide some guidelines (or even a recipe) for per-
forming reproducible large-scale experimental research and
system evaluation.

1. INTRODUCTION

Experimental evaluation and comparison of (new) tech-
niques, algorithms and/or complete systems is a vital means
to assess the practical impact and benefit of research results,
especially in applied domains such as data management sys-
tems. While many publications present experimental re-
sults, the extent of the presentation — or even the exper-
iments themselves — are often very limited due to space,
time and/or other resource constraints. The major focus
of most research publications is on the (so-called) scientific
contributions.

In this study, we shift the focus. Performing the actual
experimental evaluation becomes the primary subject. Pre-
senting the experimental setup in detail, we do not hesi-
tate to reveal all the “nasty details” and “minor problems”
that give us headaches and cause sleep-less nights. The ma-
jor contribution is hence a detailed cookbook about how to
conduct an experimental comparison and assessment of data
management systems. However, though focusing on the ac-
tual experimentation techniques, we also present the “hard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Proceedings of the First International Workshop on Performance and Evalu-
ation of Data Management Systems (ExpDB 2006), June 30, 2006, Chicago,
Illinois, USA.

Copyright 2006 ACM 1-59593-463-4 ...$5.00.

facts”: the detailed performance results we gathered.

The remainder of this paper is organized as follows. We
start with presenting our experimentation environment in
Section 2. Section 3 lists the benchmarks that we are using
and discusses adaptations of the benchmarks, their queries
and documents that are necessary to perform our experi-
ments. In Section 4, we introduce the six XQuery systems
we use, and explain in detail how we compile, install, con-
figure and use them. Section 5 reveals how we run our ex-
periments, validate results and timings, and collect the per-
formance data that is presented in detail in Section 6. We
draw final conclusions in Section 7.

2. THE SCENARIO

Given the popularity of XML in the data management
world — both in research and in commercial environments
— we chose XML data management using XQuery as the
sample scenario for our experimental study. In particular,
the idea is to run the five most popular publicly available
XQuery benchmarks — the Michigan benchmark (MBench),
XBench, XMach-1, XMark and X007 — on the most pop-
ular publicly available XQuery processors. We picked three
stand-alone (file-based) XQuery processors (Galax, Qizx/
Open, Saxon-B) and three XML/XQuery database systems
(BerkeleyDB/XML, MonetDB/XQuery, X-Hive/DB). For
simplicity, we will use engine as a unified term to refer to
both stand-alone (file-based) XQuery processors and XML/
XQuery database systems in the remainder of this text.

The chosen setup is very complex. First of all, there are
5 X 6 combinations of benchmarks with engines (actually
8 x 6, as XBench comes in four flavors, TC/SD, DC/SD,
TC/MD, DC/MD). Secondly, each benchmark consists of 8
up to 46 individual queries (in total 163 queries for all 5
benchmarks). Thirdly, each benchmark provides (at least)
3 to 6 different document sizes. Hence, we face two major
challenges: (1) Running a huge set of experiments, and (2)
collecting, analyzing, and presenting a huge amount of ex-
perimental results. To tackle these challenges, we decided
to use the XCheck benchmark platform [3].

2.1 Benchmark tool: XCheck

XCheck [3]' provides a convenient integrated platform to
run various benchmarks (or experiments in general), each
consisting of several individual queries and varying input

'Special thanks go to Loredana Afanasiev and Maarten
Marx from the University of Amsterdam for providing us
with an early pre-release version 0.1.3 of XCheck.

documents, using different engines. Per benchmark, all ex-
periments are performed by a single invocation of XCheck.

For each benchmark, XCheck iterates over all engines, and
for each engine over all document sizes, executing each query
of the respective benchmark on the given document size us-
ing the given engine. Each individual experiment is repeated
n+1 times. The execution times of the first run are neglected
(“warm-up”). XCheck then calculates the average and stan-
dard deviation of the execution times for the remaining n
runs?. Next to the overall execution time, XCheck allows to
collect the breakdown times for document processing, query
translation, query execution, and result serialization — as
far as provided by the various engines (see Section 4.3.3 for
details). Additionally, XCheck collects the sizes of the pro-
duced results and (pre-defined) error messages.

2.2 Customizing XCheck

XCheck can be extended to use new benchmarks and/or
new engines by providing the respective information, e.g.,
the benchmark queries and documents (or the respective
generators), in XML configuration files.

While being very convenient and working reliably, this
early version of XCheck comes with two limitations that are
quite relevant in for our experiments.

The first limitation is that XCheck can only handle a sin-
gle document per query. XCheck replaces the URI in the
fn:doc() call in the queries to use the requested document
(size), and only one URI is replaced. Hence, multi-docu-
ment experiments/benchmarks cannot easily be run with
XCheck. To circumvent this limitation while retaining the
multi-document characteristics, we gather the URIs of all
documents of each multi-document benchmark (XMach-1,
XBench TC/MD & DC/MD) in a single XML file

<uri_collection>

<uri>(: URI of document 1 :)</uri>
(G
<uri>(: URI of document n :)</uri>
</uri_collection>
and obtain the sequence of documents on-the-fly via the
following preamble to each query:
let $doc :=
for $d in doc("uri_collection.xml")//uri/text ()
return doc($d)

The second limitation is the way how XCheck calls the
engines to run a query. This is done via a single com-
mand line call. While this is sufficient for stand-alone (file-
based) XQuery processors, it does not allow for a “natu-
ral” usage of XML/XQuery database systems. Firstly, most
(XML/XQuery) database systems have a client-server ar-
chitecture, where the server is running in the background,
and each query is executed by calling of the client program
that then connects to the server. Secondly, XML/XQuery
database systems allow that the files that contain the XML
documents need to be read only once, loading the documents
into the database. All queries then only need to access the
documents as stored in the database, not requiring the pars-
ing of the original document with each individual query.

While having access to the source code of XCheck (it is ba-
sically a collection of perl scripts), we decided not to change
the code, but rather exploit (mis-use?) some features of
the adapters that specify for each individual engine how

In our experiments, we use the default: n = 3.

XCheck should execute a query. Next to the actual call to
execute the query, XCheck allows for both a pre-processing-
and a post-processing-call. All three interfaces are basically
simple command line calls of arbitrary executables, param-
eterized with (the name/location of) the query-file and the
document-file. Hence, a simple straight-forward solution
would be to start the database server in the pre-call, run
the query via the client, and finally stop the server with the
post-call. However, we think it is not “natural” to start and
stop the database server for each individual query execu-
tion — let alone the extra overhead/delay that extends the
overall execution time of the whole benchmark considerably.

Alternatively, we could start all required engines and load
all used documents prior to starting the XCheck runs. How-
ever, this would mean that we (1) require enough disk space
to store all (possibly huge) documents of each benchmark
in all databases concurrently, and (2) all database servers
are running concurrently — though only one is active at a
time, the “idle” ones consume vital memory, which might
compromise the behavior of the active one.

Instead, we want to start each database server individ-
ually only once per benchmark, engine and document, and
leave it running while all queries of the given benchmark are
executed on the given document with the given engine. To
implement this, we added two empty queries to each bench-
mark, containing only the comments “(:StartServer:)”
and “(:StopServer:)”. Used as first and last query for each
benchmark, these queries trigger the pre- and post-calls to
start and stop the respective database server. For all other
queries, the pre- and post-calls do nothing.

Likewise, we added a query QO to all benchmarks, that
loads the respective document into the database using the
respective database’s document loading functionality. Thus,
XCheck automatically uses these queries to measure and
collect the document loading times. All other benchmark
queries then access only the pre-loaded document, just like
a database scenario is supposed to work. To save disk space,
our post-calls remove the document from the database once
they see the respective “(:StopServer:)”-query.

2.3 Hardware & Operating System

Our experimentation platform is a dual 1.6 GHz AMD Op-
teron 242 (1 MB L2 cache) processor with 8 GB RAM and a
RAID-5 disk subsystem (3ware 7810, configured with eight
250 GB IDE disks of 7200 RPM). The operating system is
Fedora Core 4 (Linux 2.6.14 kernel), using a 64-bit address
space. We use gce/g++ 4.0.2 and Java 1.5.0 (64-bit).

3. THE BENCHMARKS

We consider the five most popular publicly available XML/
XQuery related benchmarks: MBench [12], X007 [7], XBench
[16], XMach-1 [5], XMark [14], as listed in Table 1. All
benchmarks consist of a set of queries and provide document
generators that allow to generate documents of various sizes.

3.1 Documents

Compiling, installing and running the document genera-
tors was no problem with most of the benchmarks. However,
some generators required small fixes. For X007 and MBench,
the generators required minor (quite obvious) changes to
get the source code compiled with gcc/g++ 4.0.2 on Fedora
Core 4 (details omitted here). The XBench document gen-
erator worked fine for the text-centric documents (TC/SD,

X007 [7] XMark [14] MBench [12] XMach-1 [5] XBench [16]
(cfg) (sf) (sf) (#docs) TC/SD TC/MD DC/SD DC/MD
small3 2x 45MB 0.001 1I0KB (size) (#docs) (#docs)
small6 2x 8.7 MB 0.01 1.1MB 100 2.3MB | small 1IMB 26 9.IMB| 11MB 2507 9.9MB
small9 2x 13MB 0.1 11MB| 0.1 46MB 1000 18 MB | normal 104 MB 266 97MB | 104 MB 25925 100 MB
med3 2x 44MB 1.0 110MB| 1.0 496 MB 10000 174 MB | large 1.1GB 2666 1.1GB ?) 259205(?) ()
med6 2x 86MB | 10.0 1.1GB |10.0 4.8GB huge 11GB 26666 16 GB) 2592005(?) (7)
med9 2x 129 MB | 100.0 11GB [document generator failed/crashed]

22 20 46 8 #queries 17 19 16 | 15

Table 1: Benchmarks, their document sizes and number of queries

TC/MD), but kept crashing with some “obscure” Java ex-
ception when trying to generate the document-centric doc-
uments (DC/SD, DC/MD) on our Fedora Core 4 (64-bit)
systems using Java 1.5.0. Luckily, Loredana Afanasiev could
provide us with the generated documents.

3.2 Queries

Except from XMark, not all queries of the benchmarks
were publicly available in a form the complies with the lat-
est XQuery syntax requirements. In fact, 62 out of the total
163 benchmark queries were not available as valid XQuery
queries. Our thanks go to Loredana Afanasiev for mak-
ing these queries compliant with the latest XQuery require-
ments®, so that they can be processed by most of the consid-
ered XQuery processors. Some queries still give syntactical
or runtime errors with some of the engines, mainly due to
limitations of the respective engines (see Sec. 6.1 for details).

4. THE SYSTEMS

To be included in our evaluation, XQuery processors need
to fulfill the following criteria:
e free public availability, either in open source, or at least
as a binary (evaluation) version;
e running under Linux on an x86_64 (AMD_64) or x86
(Intel 1686) platform;
e supporting (a reasonable subset of) XQuery.

While there might be more systems fulfilling these criteria,
we limit our evaluation to the following ones:

| Engine | Version | ‘
MonetDB/XQuery [6] | 0.10.2 C
X-Hive/DB [15] | 7.2.2 Java
BerkeleyDB/XML ~ [4] | 2.2.13 | C/C++
Saxon-B [13] | 8.7.1 Java
Galax 8] | 0.5.0 | OCaml
Qizx/Open [11] 1.0 Java

The first three are XML/XQuery database systems, the last
three are stand-alone (file-based) XQuery processors.

4.1 Compilation

X-Hive/DB, Saxon-B, Qizx/Open: For the 3 Java-
based engines, we use the pre-compiled . jar packages, even
if the source code is available as well.

Galax: We failed to compile the sources into a 64-bit
binary on our 64-bit Fedora Core 4 system, mainly because
we were not able to install all software packages that are
required for the compilation. Hence, we use the 32-bit x86
Linux binary that is available from the Galax site.

MonetDB/XQuery: We use the 64-bit, 32-bit OIDs
binary RPMs as available from MonetDB’s SourceForge site.

SCf., http://staff.science.uva.nl/"lafanasi/xcheck/queries.html

These packages have been compiled with full optimization
(‘configure --enable-optimize‘?).

BerkeleyDB/XML: We compiled a 64-bit version of
the sources using gec/g++ 4.0.2 and the same optimization
switches* as with MonetDB.

4.2 Configuration

The basic idea is to use the default “out-of-the-box” con-
figuration of the systems. We only applied some minor
configurations related to memory. Given that we are us-
ing a 64-bit machine with 8 GB of main memory (see Sec-
tion 2.3 for details), we allow the Java virtual machine for all
Java-based systems to allocate up to 6 GB of main memory
(‘java -mx6144m‘) Using the complete 8 GB is not possi-
ble, as some system processes use some memory (probably
less than 2 GB, but we did not spend time on finding the
maximum we could safely assign to Java; 6 GB seemed to
work and be sufficient for moderate document sizes), and
our machine is configured to not allow memory allocations
that exceed the physical available memory. The latter is
an attempt to avoid instable behavior of our machine under
excessive virtual memory allocations.

In particular, we did not explicitly create any indices with
the database systems, though especially X-Hive and Berke-
leyDB/XML might benefit significantly from creating the
right indices for the right queries (cf., [6]). The main reason
for this decision was that we did not have enough in-depth
knowledge of all systems to tune all of them equally well, and
thus ensure a fair comparison. Hence, treating all systems
equally with “no tuning at all” seems the fairest approach
for now. In fact, investigating the impact/benefit of using
indices and further tuning would provide enough material
for a separate study of this kind.

4.3 Adapters

XCheck uses simple XML configuration files (“adapters”)
to specify the details how to call each individual engine and
how to collect the detailed timing information (if available)
from their output.

Saxon-B, Galax, Qizx/Open: For the stand-alone file-
based processors, we use the default adapters that come
with XCheck 0.1.3. In the following, we describe our new
adapters for the database engines.

4.3.1 Starting Servers and Loading Documents

To model a “realistic” database usage scenario, we de-
cided to start the database server and pre-load the XML
documents from the benchmarks document XML files into
the database only once per benchmark and document, not

4gcc -06 -fexpensive-optimizations -falign-loops=4
-frerun-loop-opt -funroll-loops -falign-jumps=4
-finline-functions -frerun-cse-after-loop
-falign-functions=4 -fomit-frame-pointer

repetitively for each query. To implement this, we exploit
the concept of pre- and post-calls in the XCheck adapters.
The principle mechanism is sketched in Section 2.2. We now
discuss the details for each database engine.
MonetDB/XQuery: Our pre-call script starts the server

in daemon mode via
‘Mserver --set monet_daemon=yes

--dbinit=’module(pathfinder); pfstart();’°.
Loading the document simply requires execution of query
QO: count (doc("<doc_uri>")), exploiting the document ca-
ching feature of MonetDB/XQuery: fn:doc() reads the
document from the given URI and stores it in the database.®
Subsequent fn:doc () calls with the same URI avoid reload-
ing the document, unless its timestamp has changed. The
respective post-call script stops the server by killing it.

X-Hive/DB: We start and stop the server via

‘XHStartServer‘ and ‘XHStopServer*,
respectively. To load the documents, the execution script ex-
tracts the document URI from QO and calls a small Java pro-
gram (an adaptation of the sample StoreDocuments.java
that comes with X-Hive/DB) that stores the document in
the database and assigns it the filename from the URI for
later reference.

BerkeleyDB/XML: Though also a database system,
BerkeleyDB/XML does not have a client/server architec-
ture, but simply works as a stand-alone program that uses a
persistent database storage. Hence, our pre-call script only
needs to create a database, using the createContainer com-
mand of the dbxml console application. To load documents,
we use the putDocument command of the dbxml console ap-
plication. Like with X-Hive/DB, we extract the URI from
QO and assign the filename from the URI for later reference.

4.3.2 Running Queries

Saxon-B: ‘java -cp saxon8.jar net.sf.saxon.Query‘.

Galax: ‘galax-run -output-xml‘.
Qizx/Open: ‘qizxopen batch -serial®.
MonetDB/XQuery: ‘MapiClient -lxquery -sxml‘.

X-Hive/DB: We adapted the sample XQuery.java that
comes with the distribution according to our needs.

BerkeleyDB/XML: We use the query and print com-
mands of the dbxml console application to execute queries.

4.3.3 Measuring Time

While XCheck measures the overall evaluation time for
each query execution itself, it can also collect more detailed
timing information from the engines. The various engines
provide different means to get detailed timing information.

Saxon-B: The default adapter calls net.sf.saxon.Query
from saxon8. jar with the -t switch to get information about
tree build time (“Tree built in”), “Compilation time”,
and “Execution time”. The former two are taken as doc-
ument processing time and query translation time, respec-
tively. Query execution time is calculated as difference of
Execution time and Compilation time. Result serializa-
tion time is not available for Saxon-B.

Galax: The default adapter calls galax-run with the
-monitor-time on option to get the detailed timing for doc-
ument processing, query translation, query execution and

5By default, when loaded implicitly via doc("<doc_uri>"),
MonetDB/XQuery keeps only documents up to 100 MB per-
sistent in the database; for our experiments, we raise the
limit to 20 GB (--set xquery_cacheMB=20000).

result serialization. (See also Section 5.2.)

Qizx/Open: The default adapter calls qgizxopen_batch
with the -tex switch to get information about “evaluation
time” and “display time” which are used as query execu-
tion time and result serialization time, respectively. Doc-
ument processing time and query translation time are not
available for Qizx/Open.

MonetDB: We call MapiClient with -T to get the de-
tailed timings for document processing (“Shred”), query
translation (“Trans”), query execution (“Query”), and re-
sults serialization (“Print”). We also get the total execution
time (“Timer”), overruling XCheck’s measurements.

X-Hive/DB: We add timing statements to the modified
sample applications (StoreDocuments. java & XQuery. java)
that measure the times taken by document loading, query
translation (rootLibrary.executeXQuery (theQuery) ;),
query execution (result.next();) and result serialization
(System.out.println(value.toString());). Like with
MonetDB/XQuery, we also measure the overall evaluation
time, overruling the measurement done by XCheck.

BerkeleyDB/XML: We call dbxml with -vv to get the
query translation time (“Optimizer - Finished parse,
time taken”) and query execution time (“Query - Finished
query execution, time taken”). Additionally, we use the
time prefix with the putDocument and print commands to
get the document processing time and result serialization
time, respectively. Alternatively, we also could use the time
prefix with the query command to get the sum of query
translation time and query execution time. However, in
many cases, these timings can be trusted (see Section 5.2).

5. THE EXPERIMENTS
5.1 Checking/Validating Results

Our first concerns are not the actual performance results,
but rather the question whether the various engines indeed
produce the correct results. Unfortunately, the benchmarks
do not come with correct results. In fact, this is hardly fea-
sible, given the randomness built into most document gener-
ators for good reasons. Moreover, even with correct results
provided, validating the actual results requires more than a
simple diff, as both XQuery semantics and XML specifica-
tions allow for some variation that cannot easily be recog-
nized as equivalent. Hence, we are left with what XCheck
offers us, and that is more than nothing. First of all, XCheck
detects engine-specific error messages, using regular expres-
sions given in the adapters. Secondly, XCheck collects the
sizes of the produced query results. Though we do not have
the resources to analyze this in detail, a quick comparison
reveales that the all engines produce results “of similar size”
for each of the queries that are processed without errors.

5.2 Checking/Validating Timings

Already shortly after starting the experiments, we noticed
that there were some inconsistencies with the detailed tim-
ings of some of the systems. Basically, the breakdown tim-
ings (document processing, query translation, query execu-
tion, result serialization) did not always add up to the total
evaluation time. In most cases, the sum was less than the
total; we assume that this is due to start-up and communi-
cation costs that are not included in the detailed timings.
Once the execution time (per query) exceeds one minute
(60 seconds), the detailed timings reported by Galax are so

small, that their sum is only a minor fraction of the total
execution time. We guess that the respective code is not
correct, and hence, consider these timings as unreliable.
More severe are the cases where the sum of the detailed
timings exceed the total times (often significantly). This is
mainly the case with BerkeleyDB/XML, regardless which of
the alternatives we use to get the query execution times (cf.,
Section 4.3.3). Apparently, there is some bug in the code
that measures the respective times in BerkeleyDB/XML.

6. EXPERIMENTAL RESULTS

Figures 1 through 18 present a subset of the performance
results that we collected from our exhaustive experiments,
running all benchmarks with various document sizes, as de-
picted in Table 1. To avoid “endless” runs, we limit the
execution time for each single query to at most one hour
(3600 seconds). Only for loading documents (query QO0), we
allow up to one day (24 hours).

The goal of this work is not to crown a single best system
nor to advice users which system to use for their purpose.
Rather, we want to provide detailed information and in-
sights such that in particular developers can draw their own
conclusions as to whether, where and how to improve their
systems. Of course, also users are welcome to draw their
own conclusions from the detailed results that we provide.

On the y-axis of all graphs, we list all queries of the re-
spective benchmark, identified by their number on the right-
hand size of each graph. For each query, we list all six en-
gines, identified by their first letter on the left-hand side of
each graph. For each benchmark, we show two plots.

Execution time breakdown. For one sample document
size per benchmark, the graphs on the left-hand side (“odd”
Figures 1, 3, ..., 17) depict the relative contribution of the
detailed timings to the total evaluation time per engine and
query. The different sections of the horizontal bars represent
the various detailed timings: query translation (tran), query
execution (exec), result serialization (seri), communication
(comm; cf., Sec. 5.2), and document processing (docu). Ad-
ditionally, the wrongly reported times that exceed the actual
total times are marked as (void) (cf., Sec. 5.2).

Scalability. The graphs on the right-hand side (“even”
Figures 2, 4, ..., 18) depict the total times for all document
sizes of each benchmark. The execution time per engine,
query and document is the length of the respective horizon-
tal bar taken from the left margin of the graph, i.e., bars for
smaller documents cover the left part of the bars of larger
documents. To accommodate the results for all document
sizes of one benchmark in one graph, we use a logarithmic
scale (decimal base) for the x-axis of the scalability graphs.

6.1 Errors

Some queries fail to execute successfully. Table 2 lists all
errors that occur with all our experiments. We use the error
codes (E01-E10, DNF) from Table 2 to indicate the errors in
Figures 1-18. In the “Scalability” figures, the error codes are
depicted in the color of the smallest document size that the
respective error occurs with. In various cases, the “unknown
error/crash” (E10) could actually be caused by the fact that
we kill the respective engine (or client) due to a timeout, in
which case they should rather read DNF. However, we did
not check this by hand in all cases. More details will be
available in the extended version of this paper [10].

EO1: preceding axis not supported

- Galax: XBench-DC/SD Q4; XBench-TC/SD Q4.

E02: parsing / (static) typing

- MonetDB/XQuery: X007 Q14,23; XBench-DC/MD Q4;
XBench-TC/SD Q10,11.

- Qizx/Open: MBench QA2; X007 Q23; XBench-DC/MD
Q4,17; XBench-DC/SD Q17,20; XMach-1 Q3; XMark
Q3,11,12,18.

EO03: invalid variable reference

- MonetDB/XQuery: X007 Q5.

E04: fatal XQuery compiler error

- MonetDB/XQuery: XBench-DC/MD Q6; XBench-DC/SD
Q6.

E05: materialization out of bounds

- Galax: XMark Q11,12 (110 MB).

E06: out of memory

- Galax: MBench Q0 (4.8 GB); XBench-TC/MD Q3
(2666 docs / 1.1 GB), Q0-19 (26666 docs / 16 GB);
XBench-TC/SD Q0-19 (>1.1 GB).

E07: out of Java heap space

- Saxon-B: MBench QS6,J1-4 (496 MB), Q0-A6 (4.8 GB);
XBench-TC/MD Q0-19 (>2666 docs /1.1 GB);
XBench-TC/SD Q0-19 (>1.1 GB); XMark Q1,4,6,7,18,19
(1.1GB), Q0-20 (11 GB).

- Qizx/Open: MBench QA4 (496 MB), Q0-J2 (4.8 GB);
XBench-TC/MD Q0-19 (26666 docs / 16 GB);
XBench-TC/SD Q0-19 (11 GB); XMark Q0-20 (11 GB).

E08: segmentation fault

- BerkeleyDB/XML: MBench QS12 (>496 MB).

- Galax: X007 Q19 (>2x 44 MB); XMark Q0-20 (>1.1 GB).

E09: abort

- BerkeleyDB/XML: XBench-TC/SD Q2,17,18 (>1.1 GB);
XMark Q7 (>1.1GB), Q20 (11 GB).

E10: unknown error/crash (cf., Sec. 6.1)

- MonetDB/XQuery: MBench QA2,4,6, QS12,A5 (>496 MB),
QR3,52,15,932,A1,J1-J4 (4.8 GB); XMach-1 Q1,7,8
(10000 docs / 174 MB).

- X-Hive/DB: MBench QS12 (>496 MB); X007 Q19 (2x
120 MB).

- BerkeleyDB/XML: MBench QS1,2,A2,6,QR1-A6 (4.8 GB);
X007 Q14,15, Q19 (2x 129 MB); XBench-TC/MD Q19;
XBench-TC/SD Q3,6,9,10 (>1.1 GB); XMach-1 Q3,7;
XMark Q6,14 (1.1 GB), Q2-4,13,15-19 (11 GB).

doc: document loading failed

- MonetDB/XQuery: XBench-TC/MD Q1-19
(26666 docs / 16 GB); XBench-TC/SD Q1-19 (11 GB).

DNF: timeout (>1h)

- MonetDB/XQuery: MBench QS31,33-35 (4.8 GB);
XBench-DC/MD Q3-19 (25925 docs / 100 MB);
XBench-TC/MD QO (26666 docs / 16 GB; >24 h);
XBench-TC/SD Q0 (11 GB; >24 h);

XBench-TC/SD Q3 (>1.1 GB); XMark Q11,12 (11 GB).

- X-Hive/DB: MBench QA4 (>496 MB); XBench-TC/SD Q3
(>1.1 GB); XMach-1 Q7 (10000 docs / 174 MB); XMark
(8,9,11,12 (110 MB), Q10,19 (11 GB).

- BerkeleyDB/XML: MBench QJ2, QS35,A4,J1,3,4 (>496 MB);
XBench-TC/MD Q18 (26666 docs / 16 GB);
XBench-TC/SD Q2-19 (11 GB); XMark Q8,9,11,12
(>110MB), Q10 (>1.1GB).

- Saxon-B: MBench QA2,4 (>496 MB); XMark Q8-12 (1.1 GB).

- Galax: MBench QA4,J1-4, Q1-A6 (4.8 GB); XMach-1 Q7
(10000 docs / 174 MB); XMark Q8,9 (110 MB).

- Qizx/Open: MBench QJ3,4 (>496 MB); XBench-TC/SD Q3
(>1.1 GB); XMark Q10 (1.1 GB).

lic: 30-days evaluation license expired

- X-Hive/DB: MBench Q0-A6 (11 GB), QJ1-4; XBench-TC/MD
QO0-19 (26666 docs / 16 GB); XBench-TC/SD QO0-19
(11GB).

Table 2: Errors and Error Codes used in Fig. 1-18

XBench-DC-MD small (2597 documents; 9.9MB)

M E
Jg
g &
10

g 18

M]

X i

g 1

M]

X i

§ 13

Q]

M | E02 i

X]

g 14

G]

Q | E02 i

M B

X i

g 1s

M r E04]

X i

§ 16

Q]

M i

X]

g 17

G 1

Q]

M]

X]

g 1e
@]
23]

2 4
b]

% 1o

M]

X i

g 110

G 1

Q]

M B

X i

g ERT

G]

Q 1

M]

X

% 12

14

Q]

16

Q]

M]

X i

g 17

§ F E02]

19

Q]

0 20 40 60 80 100
evaluation time breakdown (%)
tran exec w= seri wm comm s docu === (void)

Figure 1: XBench-DC/MD: Execution time breakdown

Queries

XBench-DC-MD

evaluation time (sec)

small (2597 docs; 9.9MB) ===

Figure 2: XBench-DC/MD: Scalability

normal (25925 docs; 100MB) ===

time limit: 1h

M (10h

X 1g

8 18

S EE:]

g 13

Q 19

v 1

W]

g 14

V] DNF

N]

g i3

a]

W F E0z B

\]

g 34

g]

Q | E02]

V] DNF

W]

g 1s

M F Eo4 1

X]

g EG

a]

V] DNF

W]

g {7

G]

e}]

M DNF 4

W]

g s
@]
28]

o p
2y BiF
é EE
V] DNF
N]
g 310
IS]
§]
M DNF 4
W]
g {1
V] DNF
N]
% ERE]
DNF

J14
8]
DNF 4

g ERD

V] DNF

N]

g J17

§ L E02]

DNF
319

§]
0.01 0.1 1 10 100 1000 3600 10000

Queries

XBench-DC-SD normal (104MB)

Engines

M 1
1g

g £
1T

8 18

M B

X]

g 11

M]

X i

§ 12

]]

M B

X]

g 13

G]

Q 1

M]

X

B

S

8 F EO1]

M B

X]

§ 15

a]

M | E04 B

X]

g 16

G]

Q 1

M]

X i

é 17

M B

X]

§ 18

a]

M]

X]

g 1o

M]

X i

% 110

M B

X]

§ 111

3]

M]

X]

g 112

M]

X

é 14

M B

X]

§ 17

Q - E02]

M]

X]

g 19

M B

X]

B 1 20

§ t E02]

0 20 40 60 80 100
evaluation time breakdown (%)
(void) tran exec we= seri wmm comm e docu ==

Figure 3: XBench-DC/SD: Execution time breakdown

Queries

XBench-DC-SD

evaluation time (sec)

small (11MB) m== normal (104MB) ==

Figure 4: XBench-DC/SD: Scalability

time limit: 1h
1¢
B 138
S ERS)
3 18
ER
a4]
j2
a]
g s
G]
Q]
[i
X]
B J4
§ LE0]
15
8]
L Eo4]
g s
G]
Q]
[i
X]
§ 17
. i
]]
5 EE]
&]
Q]
g e
Y] i
X]
% 310
M i
\]
§ ERE
8]
M 1
\]
g ERE:
Y] i
X]
é 114
M i
W]
§ J17
Q E02]
M 1
X]
g 119
Y] i
X]
8 420
§—Eoz]
0.01 0.1 1 10 100 1000 3600 10000

Queries

XBench-TC-SD

XBench-TC-SD normal (104MB)

huge (11GB) ==

1000

100

large (1.1GB) ==

10

evaluation time (sec)

XBench-TC/SD: Scalability

£ = sauenD

I & “00p ;

S A -

A = peo| - ~ ® <« © © ~ © @ e pnt o o A = ® 2 3
TlLo Mo~ 9o MO OOONON ILILONOW | OO I~ QOLNON | OOONON | QOLNON | OOLINON | QOONON | OONON | OLLINON | O OLLINON | QOLINON | OOLLINON | QOO | 0 VTINON | Qolo] ™
T.|Z= S00io= 000 0=0000 ZZr00Z | 0570 O 0=Z000 | 0000 | 0= 7000 | 057000 | O=r000 | =000 =Z000 | 0=7000 | O0=Z000 | =000 | 0=0000 | O=0000 | 0=Z000
€[5 WOOWi® WOW|S MW AFUNNS S AW W05 SWiD S WD S Sl S S (LI WD AUODiT ALMDiT AMONiT AOONiS WMONniS WNnnio A0 o

=3
£ Q
P @
£
= o o
1= S S
w w w
| | |
SXONOC | SXONOC | SXMNOT | SXONOC | SXMNOT | SX0N0C c c o] mNOS c O [SXONGC | SXONOC | SX0NGOC | SX0NOC | SX0NOC | SX0N0C
sauibug
sauenD
*00p peo| - o~ © <« © © ~ > e hay o e h = ® 2
L L L L e
o
5]
o
3
)
<
o
N
= 2 «
> S S
w w w
| | |

SXONOC | SXONOC | SXDNOT | SXONOC | SXDNOT | SX0N0T C c o) NGO | SXONOCC O SXONGC | EXONOC | SX0NOC | SX0NOC | SX0NOC | SX0N0C

sauibug

normal (104MB) ==

Figure 6

0.1
small (11MB) ==

0.01

(void)

100

docu ==

comm ==

evaluation time breakdown (%)
seri =

exec ==

XBench-TC/SD: Execution time breakdown

tran ==

Figure 5

= = seuenD

S 5 o0p .

] —

A~ peo| - ~) < © © ~ © o e ha o e h3 ° © = * > S
EMLo MONi00 MNON 00 MONI QO INONI OO MNONI0O MNON 00 MNONI 00 INON Q0 IO 0O INONi 0O INONI 00 INON 00 ION i 00 INONI 0O IO 0O NON 0O INON 00 NON i QOLNON 00 Nox] =
T |Z=,000i 6= SO0 0= SO0 0= SO0 0= 000 0= SO0 0= 000 0= S0 0= 000 0= SO0 0= 000 0= SO0 0= G000 0= SO0 0= 000 0= G000 000 0= SO0 6=7000 0= SO0
£ @
@ @
£
= (=3

[=]
8
o
8
o
=
S
2 o
= S
S
2
o
o
X
=]
o
w -
!)
SXONOC | SXONOC | SXMNOT | SXONOC | SXMNOT | SXONOC | SX0NCS C c T | SX0NCO O | SXONCO O | SX0NCC O | SX0NOo o] c o ©
sauibug
saueND
*20p peo)| - ~ ® « © © ~ © e pay o b kg e = * 2
o L LA e B b e ERmE e BRI e L L o L LN i i
o
8
o 8
=
s
5
e
=
[
13
5
3
8
s o
© 8
©
«
]
€
o
2
o
=
o o
vﬂ <
<
S
2
(73
il
X
(=1
Y
o
w
L o

SXONOC | SXONOC | SXMNOET | SXONOC | SXMNOT | SXONOC | SXMNOC | SX0NOC | SX0NOC | SX0NOC | SXMNOT | SX0NOC | SXMNGC | SX0NOT | SXMNOC | SX0NOC | SX0NGOC | SX0NOC | SX0NOC | SX0NCC

sauibug

evaluation time (sec)

evaluation time breakdown (%)

large (2666 docs; 1.1GB) ==
huge (26666 docs; 16GB) ==

small (26 docs; 9.1MB) ===
normal (266 docs; 97MB) ==

exec == seri = comm == docu == (void)

tran we=

XBench-TC/MD: Scalability

Figure 8

XBench-TC/MD: Execution time breakdown

Figure 7

sauenD

XMark

0.1 (11MB)

XMark sf:

10 (1.1GB) ==
100 (11GB) mem

sf:
sf=

0.1 (11MB) m
1 (110MB) ==

sf=
sf=

XMark: Scalability

evaluation time (sec)

Figure 10

01 (110KB) =
.01 (1.1MB) =

.0
0.

0.

sf=
sf:

(void)

100

docu ==

80

comm =

60

seri =

40

evaluation time breakdown (%)

XMark: Execution time breakdown

exec w=

20
Figure 9

tran =

*20p peo) © S e h & e ha ° £ = S
= SN [TRTRTNTE N QNTRINTS: T {PATRTRISY, Ny (THRTRIS N N = N N - N -
& frefiiting Tt g5 A0 & - &F5 1 BREm LEOTE Loom Ldod Lmoo S
E 3
> 3
£
= o

38
8
o
e
o
S
o o o o
8 8 8 8
o i o o _
! L ! ! 3
SX0NOo NGO | SXONOT ONOC | SXONOS G| SX0NCO NGO | SXONOC C c C c C c O SX@NO0 | SXO0O0 | SXONOC | SX00OC | SX0noc | ©
saulbug
sauenD

*00p peo| - I < © © ~ © o e pa o e b e ~ * 2 5

I L B o o L L L LI i L i i e o S L SN
1

o o o o
8 8 8 8
o i o b
L L L L
SXONOC | SXONOC | SXONET | SXMOOT | SXONOC | SX0NOT | SX0NOT O | SX0NOO O | SX0NOo O | SXDNOC | SXONOC | SX0NGET | SXMOOT | SX0NOT | SX0NOC | SX0NET | SX0NOC | X000

sauibug

XMach-1 10000 documents (174MB)

Wi T T -
s
13
8 18
M FEfo g
X]
g 31
g]
a]
M g
X]
8 12
&]
8]
M g
\]
B LED E
&]
Q | E02]
8 1 g
5 ¢ 14 s
ﬁg 1 &
1s
8]
e
8]
C'Efg]
L BNF]
L E10 ER4
L DNF]
I]
L'Efo E
8
a
0 20 40 60 80 100

evaluation time breakdown (%)

tran s exec mmm seri comm s docu (void)

Figure 11: XMach-1: Execution time breakdown

7. CONCLUSIONS

First of all, we can conclude that our exercise demon-
strates the feasability of such an extensive and detailed ex-
periment — though is requires quite some work, time, and
resources. We describe our experimental setup in detail and
explain, how we tackle various problems to reach our am-
bitious goal. We hope, we provide all information that is
necessary and sufficent to reproduce our results.

As expected, the actual performance results do not crown
a single winner. However, some general trends can be ob-
served. In a realistic database scenario, i.e., with the doc-
uments pre-loaded in the database, the database engines
perform considerably better (up to two orders of magni-
tude) than the file-based stand-alone systems. Even if we
add the initial document loading times, they are often still
faster, but hardly ever slower. In pure document load-
ing performance (query Q0), MonetDB/XQuery, Saxon-B
and Qizx/Open lead the race neck-to-neck; X-Hive/DB and
BerkeleyDB/XML follow within a factor 2-3; Galax runs
about factor 10 behind the leaders. While all systems have
their strengths and weaknesses, MonetDB/XQuery seems
to be ahead of the pack in most cases, usually followed (in
that order) by BerkeleyDB/XML, X-Hive/DB, Qizx/Open,
Saxon-B, and finally Galax. Join recognition and processing
(still) seems to be the biggest challenge to be solved.

For the future, we plan to extend the scenario in various
dimensions, e.g., including more systems (e.g., eXist [1]) and
benchmarks (e.g., XPathMark [9], MemBeR [2]), consider-
ing other compilers and optimization flags, using different
hardware and operating systems, etc.. The goal is not to find
the single best setup, but rather to show that all these often
neglected factors can influence experimental results consid-
erably. Hence, all reports of experimental results should
reveal all these information explicitly in order to (1) provide
all information to make the results reproducible, and (2) to
put them in the right perspective. Finally, we hope that our
experiences with XCheck will help to improve and extend
this convenient experimentation tool.

XMach-1 time limit: 1h

OONWXZ

=

load doc. 15

OONm:

E10

OONm:

OONm:

E E10

I E02

Engines

OONm:

OONm:

OONm:

E E10

8

R R R NS SRS SN RS SN RS SRR TS N T
'S
Queries

0.01 0.1 1 10 100 1000

8.
[1]
2]

3]

[4

[5]

[6]

(10]

(1]
(12]

[13]
(14]

[15]
(16]

3600 10000
evaluation time (sec)

100 docs (2.3MB) == 1000 docs (18MB) === 10000 docs (174MB) ==

Figure 12: XMach-1: Scalability

REFERENCES

eXist. http://exist.sourceforge.net/.

L. Afanasiev et al. MemBeR: A Micro-benchmark
Repository for XQuery. In XSym, 2005.

L. Afanasiev et al. XCheck: a Platform for Benchmarking
XQuery Engines. In VLDB, 2006. Demo.
http://ilps.science.uva.nl/Resources/XCheck/.
Berkeley DB XML.
http://www.sleepycat.com/products/bdbxml.html.

T. Béhme et al. XMach-1: A benchmark for XML data
management. In BT'W, 2001. http://dbs.uni-leipzig.de/
de/projekte/XML/XmlBenchmarking.html.

P. A. Bonez et al. MonetDB/XQuery: A Fast XQuery
Processor Powered by a Relational Engine. In SIGMOD,
2006. http://monetdb-xquery.org/.

S. Bressan et al. X007: Applying 007 benchmark to XML
query processing tool. In CIKM, 2001.
http://wuw.comp.nus.edu.sg/ ebh/X007.html.

M.F. Fernandez et al. Implementing XQuery 1.0: The
Galax Experience. In VLDB, 2003.
http://wuw.galaxquery.org/.

M. Franceschet. XPathMark: An XPath Benchmark for
the XMark Generated Data. In XSym, 2005.

S. Manegold. An Empirical Evaluation of XQuery
Processors. Technical Report INS-E0607, CWI, 2006.
http://www.cwi.nl/htbin/ins1/publications?request=
abstract&key=Ma:TR-CWI:06.

Qizx/Open. http: //wuw.axyana.com/qizxopen/.

K. Runapongsa et al. The Michigan Benchmark: A
Microbenchmark for XML Query Processing Systems. In
EEXTT, 2002. http: //wuw.eecs.umich.edu/db/mbench/.
Saxon-B. http://saxon.sourceforge.net/.

A. Schmidt et al. XMark: A Benchmark for XML Data
Management. In VLDB, 2002. http://xml-benchmark.org/.
X-Hive/DB. http://www.x-hive.com/products/db/.

B. Yao et al. XBench benchmark and performance testing
of XML DBMSs. In ICDE, 2004.
http://se.uwaterloo.ca/~ddbms/projects/xbench/.

X007 med3 (2x 44MB)

Figure 13: X007: Execution time breakdown

M ! ! N
iE $
15
4 @©
1
3]
M B
X]
g 12
Q]
34
a]
F E03 b
5
3]
M B
X]
g i6
M B
X
§ 7
3]
EE]
3]
M B
X
g 110
a4]
ERb
3]
M B
8 X]
B 4
© S 312
2
I 8]
313
3]
M r E02 1
X i
B LEI0 314
M B
X]
§ F E10 315
3]
M]
X]
g R
M]
X 1
§ J17
a]
M B
X]
g 11
G]
Q 1
M]
X i
B 119
§ - E08
320
3]
M B
X
§ T 21
422
3]
F E02 1
323
Q | E02]
0 20 40 60 80 100
evaluation time breakdown (%)
tran == exec == seri = comm == docu (void)

Queries

X007

small3 (2x 4.5MB) ===
smallé (2x 8.7MB) ==

Figure

evaluation time (sec)

small9 (2x 13MB) ==
med3 (2x 44MB) ==

time limit: 1h
M 4 .
1s
X 18
S —— ER
8 — :E
¥ 1
M]
g ERl
8 = :
Wi 1
)]
g EE
8]
a p—]
M 1
X]
g 13
Q -]
M 1
X]
g ER!
a = 1
v | Eos E
\]
g is
o} - p
M 1
W]
g E
8 — B
M i————— B
\]
g 7
&]
o} -]
M | —— B
M]
§ EK
-]
g 310
G]
a]
M 1
X]
§ ERL
o -]
2]
5 8 112
c R B
uJE) p— b
M ———— |
M]
g q13
a -]
L'Eo2 E
LEo q14
o - p
— 1
FET0 ERE
o} -]
— 1
116
Q —]
ERES
a -]
M | —— B
M]
B 118
8 = :
- 1
E10 1
£ p— E10 349
G E08]
8]
[T 1
X]
g 420
o - E
M | ————— E
W]
g EE
a -]
M 1
X]
§ J22
o} -]
v | Eoz E
W 1
g 123
=R ;]
0.01 0.1 1 10 100 1000 3600 10000

med6 (2x 86MB)
med9 (2x 129MB) m==

14: XOO7: Scalability

Queries

salenD

= o © < o © < 0 © ™~ © @ 2 = 3 H 2 = 2 2 8
o« [[i4 4 7] @» » @» » » » » @» 7] » » » » 1 » %) » 8
- LI B B L L B B B 1 e (=1
= QO CONLIN OOONLIN G OONLING O LN 0O NN OONLN ! 0ONLNG OONLNG 0ONWIN! OONLIN | OONLN! OONLN OONLN ' OONLIN OOmINLIN /OOONLIN | OONLLN | OONLN ! 0ONLN voNwIN | oohiiN] ™
= = SZ0 = OZ0! =roz0! SEr0z0! Sroz0! Seoz0S! =r0z0! =-070 =Cozo “=S5z0
= WOAD! WWAD W WnAD! UnAD LAW L WAD CWIAD CLUAD LAD UCAD WAL LOAD WOAD WIAD WWAD WUOUAD WOUIAD T WAL LIAW . WiAd LiAn A g
E @
>)
£
- 1=
=3
3
=3
S
<
2
8 e
Q
=
o
o)
W] —
| | =Y
SXONEOC | SXONOC | SXMNOT | SXONOC | SXMNOT | SX0UXOC | SXMNOT | SX0NOC | SX0NOC | SX0N0C c c G| SXONCO T SXONOC | SX0NOC NGO | SXONOC NGO | SXONOC TS o ©
saulbug
sauanD
o - N w0 © ~ © =3 o
= o) < = & @ < 0 © ~ I @ = = = e - = = =2 &
*00p peo) o« « [i4 4 7] @» » @» » » » » @» 7] » » » » » » 7] »
L L B L L L B L T
=3
S
Q
D
o
g
¢ 8
N}
o
<
S
2
5}
aQ
=
=3
<
=)
«
o) ~ ocon
= = S =28
W] o um
| | | L o
SX0NOo G| SXONCO C c I | SXONOC | SX0N0T T | SX0NCC G| SX0NCC T | SXONGO | EXONOT | SX0NGC | SX0NOEC | SX0NOC | SX0NOT T | SXONCO o) c

sauibug

evaluation time (sec)

evaluation time breakdown (%)

10 (4.8GB) ==

st=

1 (496MB) ==

st=

0.1 (46MB) ==

=l

exec == seri m comm == docu == (void)

tran we=

MBench: Scalability (1/2)

Figure 16

MBench: Execution time breakdown (1/2)

.

Figure 15

sauenD

& & & Q o
@) » » %] g 3 3 8
- T T T T T T T T LI e A e i =
- FEISHNTIOS QOIS QOIS | QOMNILIN | L OO [N we W w~ w]
= S &8 Z5Z zo z
2 WA WA WA WAL 8 woFm w w a4y o oY ol g
. 8
£
- o
3
3
o
=
<
2
2 e
Q
=
oS
w w wuw w w
i 2z 212 ENIHIESEEERIHIEALE
il I § | i i VN SIFRFIFE P SIS 0 PN RArERN A A=
SXDNOC | SXONOT | SXMNOT | SX0NOC | SXMNGOC | SX0NGC | SX0NCC SXOnoo C c T | SXONGC | SXONOC | SX0NOC | SX0NOS NGO | SXONOC G| SX0NOCO C c 0 Sxmnoo ©
saufbugy
salenD
= « © < © © ~ ©] 2 = o @ < 0
N I N N o I o I 1% @ @ o © 5] I - M < [T} © - 1N) <
1] » 1%} » %) @» %) % %) %) 1%} %) » 1%} %) < < < < 5 S S S
L L L L LI R B L L L 0 1 A
o
=
o
«©
o
3
¢ 8
N}
@
I
S
2
]
Q
=
o
<
o
Y
w w TRTRI Ll Wl [TITRTI PR TR TTH
z LUz Czzzz5 2 212 2 25z 2 z52| 2 Z5z2z 2 z5zZ
a w i wo W wooooud |w waw w ouo w owo w ouwooiw owoo
| I P R i AT S SRR AR AR S
SXONOC | SXONOC | SXDNOT | SXONOC | SXDNOC | SX0NGT | SX0NCC SX0Noo o) c T | SXONGC | EXONOC | SX0NGC | SX0NOT T | SX0NCO T | SX0NCC o) c T | SXDNOC
sauibug

evaluation time (sec)

evaluation time breakdown (%)

10 (4.8GB) ==

sf=

1 (496MB) ==

sf=

0.1 (46MB) ==

sf=l

exec == seri = comm == docu == (void)

tran we=

MBench: Scalability (2/2)

Figure 18

MBench: Execution time breakdown (2/2)

.

Figure 17

